
This Provisional PDF corresponds to the article as it appeared upon acceptance. Copyedited and
fully formatted PDF and full text (HTML) versions will be made available soon.

Design of a combinatorial DNA microarray for protein-DNA interaction studies

BMC Bioinformatics 2006, 7:429 doi:10.1186/1471-2105-7-429

Julian Mintseris (julianm@bu.edu)
Michael B Eisen (mbeisen@lbl.gov)

ISSN 1471-2105

Article type Methodology article

Submission date 7 July 2006

Acceptance date 3 October 2006

Publication date 3 October 2006

Article URL http://www.biomedcentral.com/1471-2105/7/429

Like all articles in BMC journals, this peer-reviewed article was published immediately upon
acceptance. It can be downloaded, printed and distributed freely for any purposes (see copyright

notice below).

Articles in BMC journals are listed in PubMed and archived at PubMed Central.

For information about publishing your research in BMC journals or any BioMed Central journal, go to

http://www.biomedcentral.com/info/authors/

BMC Bioinformatics

© 2006 Mintseris and Eisen, licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:julianm@bu.edu
mailto:mbeisen@lbl.gov
http://www.biomedcentral.com/1471-2105/7/429
http://www.biomedcentral.com/info/authors/
http://creativecommons.org/licenses/by/2.0


Design of a combinatorial DNA microarray for protein-DNA 
interaction studies 
 
Julian Mintseris

1, §
 & Michael B. Eisen

2,3 

 
1 

Boston University, Bioinformatics Program, Boston, MA, USA 
2 

Department of Genome Sciences, Lawrence Berkeley National Lab, Berkeley, CA, USA 
3
 Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA 

 

 

 

 

§
 Corresponding Author 

 

Email addresses: 

JM: julianm@bu.edu 

MBE: mbeisen@lbl.gov 

 



 

Abstract 
Background 

Discovery of precise specificity of transcription factors is an important step on the way to 

understanding the complex mechanisms of gene regulation in eukaryotes.  Recently, double-

stranded protein-binding microarrays were developed as a potentially scalable approach to tackle 

transcription factor binding site identification.   

 
Results 

Here we present an algorithmic approach to experimental design of a microarray that allows for 

testing full specificity of a transcription factor binding to all possible DNA binding sites of a 

given length, with optimally efficient use of the array.  This design is universal, works for any 

factor that binds a sequence motif and is not species-specific.  Furthermore, simulation results 

show that data produced with the designed arrays is easier to analyze and would result in more 

precise identification of binding sites.   

 
Conclusions 

In this study, we present a design of a double stranded DNA microarray for protein-DNA 

interaction studies and show that our algorithm allows optimally efficient use of the arrays for 

this purpose.  We believe such a design will prove useful for transcription factor binding site 

identification and other biological problems.   

 

Background 
With the human and many other genome sequences complete or nearing completion, we are 

approaching the goal of identifying all the protein coding genes.  However, to understand the 

function of these genes in different physiological contexts, it is important to understand how 

their expression is regulated.  Mechanisms of gene regulation are varied and complex and 

unraveling them will require a combination of approaches[1, 2].  Having a catalog of all the 

transcription factors and being able to characterize their binding specificity at cis-regulatory sites 

would provide a fruitful starting point.   

 

Recent advances in chromatin immunoprecipitation (CHIP) methods have led to large-scale 

efforts to determine all protein-DNA binding events in yeast[3, 4] but scaling up such methods 

for mammalian genomes may prove difficult.  Protein-binding microarrays (PBM), initially 

developed on a small scale by Bulyk et al.[5, 6] showed promise in identifying transcription 

factor binding specificity with high accuracy and was recently successfully scaled up for the 

yeast genome by using PBMs with all known yeast intergenic regions[7].  Although an exciting 

advance in the field, current design of PBMs still leaves room for uncertainty because some of 

the intergenic regions may be too long to pinpoint the binding sites with high accuracy.  Scaling 

this method up to mammalian genomes would also require designs spanning multiple arrays, 

with a new design for each genome.  Both CHIP and PBM methods are well suited for low 

resolution identification of genes affected by a given transcription factor.  However, in order to 

fully understand regulation, researchers will always be interested in pinpointing the specific 

regions to which the factor binds.  Identifying this region from CHIP-CHIP or PBM data requires 

sophisticated computational analysis, much like that used in ab-initio cis-regulatory region 

discovery.  Reliability of such analyses is sometimes questionable, in part because of the 



repetitive and degenerate nature of the intergenic sequences.  Harbison et al. note that some 

intergenic sequences are highly homologous thus skewing the results of motif discovery 

algorithms[4].  If there was a way to test the binding of a given factor to all possible motifs of a 

given length, it would then be trivial to scan the intergenic sequences for potential sequences 

corresponding to a well-defined motif.  We therefore propose a new PBM design that would 

allow the testing of all possible binding sequences of a given length in an optimally-efficient 

non-degenerate manner.   

 

In recent years, a number of technological innovations took place, allowing programmable 

synthesis of microarrays as well as new techniques to make the arrays double-stranded[8, 9].   In 

particular, Warren et al. successfully constructed and tested a combinatorial dsDNA array with 

all possible 8-mer sequences, with one sequence per spot[9].  Since the proof of principle for this 

technology has now been shown, here we focus on optimizing experimental design.  Using 

variations on established graph theory algorithms, we propose a new design of a PBM, which 

would allow the in-vitro testing of transcription factor binding to all possible DNA targets up to 

length 12.  This approach removes some of the redundancy in testing long intergenic regions.  In 

addition, our design is organism-independent.   

 

Results 
Algorithm 

The design, as described by Bulyk et al. in proof-of-concept papers [5, 6] allows for testing N 

binding sites by screening N spots on the array.  This approach is straightforward but not very 

practical for most transcription factors because the number of possible binding sequences is 4
k
, 

where k is the length of the binding site.   

 

The more recent design involved spotting all annotated yeast intergenic regions on the array[7].  

This comprehensive approach is more scaleable, although mammalian genomes contain long 

“desert” regions[10] which would most likely have to be broken up into shorter segments for 

spotting on microarrays.  In order to identify the transcription factor binding sites within the 

spotted regions, in this as well as in many other approaches, the authors rely on a variant of the 

Gibbs sampling algorithm.  Some of the longer intergenic regions tested may present a problem 

in identifying binding patterns for low-specificity transcription factors.  Uniform probe length 

and optimal non-redundancy of the array proposed here would make it easier to analyze 

experimental results and estimate their statistical significance.   

 

We propose the design of a dsDNA array that allows screening for length k TF binding sites with 

maximum efficiency by allowing the k-mers to overlap.  For instance, the 8-mer probe 

ACTGTGCA represents two potential 7-mer TF binding sites – ACTGTGC and CTGTGCA.  It 

turns out that we can easily design an array with probes of certain length b that contain all 

possible k-mers, such that the required number of probes is minimal.  If we can find the shortest 

string that contains all possible k-mer substrings, we can then “cut up” this string into individual 

probes of desired length.  The problem of constructing such a minimum-length string can be 

represented in graph-theoretical formulation (see Methods for details).   

 

Imagine a directed graph with nodes represented by all possible k-mers, where the edges exist 

between nodes that overlap by (k-1).  Finding the shortest path for a graph of all possible k-mers 



results in a superstring of length (4
k 

+ k).  Given a desired probe length b > k, we can design an 

array with N probes that enables us to test the binding specificity of any transcription factor that 

can bind to a k-mer.  The number of probes would have to be approximately  

N = 4
k
/(b-k+1) 

The length of a string produced by naively joining all possible k-mers is k*4
k
.  This means we 

are able to reduce the number of probes by a factor of k.  Furthermore, we can turn the reverse 

complementarity of double-stranded DNA sequence to our advantage and gain another factor of 

2 reduction in number of array probes[9, 11].  For instance, having included the 7-mer 

ACTGTGC in the superstring and assuming that the array probe will be double stranded, we are 

already accounting for the reverse complement 7-mer GCACAGT.  This introduces some 

complications in the algorithm, which we discuss in Methods.   

 

Figure 1 shows the graph and the resulting “probes” for the simplest case, where k = 2.  Here, we 

save approximately a factor of 4 of the length of DNA to be tested, but for all possible 10-mers, 

we would save a factor of ~ 20.   

 

We would also need to take into account some additional considerations, such as allowing for 

spacers on either side of the designed sequence to ensure reliable binding, as well as a primer, if 

the double stranded DNA is constructed enzymatically.  We believe such an approach takes 

some of the ambiguity out of the decoding process that is needed in current approaches that rely 

on spotting long intergenic regions[7].   

 
Experimental Design 

Using our combinatorial design, testing of all possible 10-mers with an array of probes of length 

25 (not including any spacers or primers) requires only 32928 probes.  To avoid potential 

problems with factors binding to multiple sites on a given probe, and to aid in the identification 

of precise binding sites, the experiment may be performed in duplicate, with the cut points on the 

cyclical superstring shifted by k/2 (Figure 1).  Table 1 shows the calculations for the number of 

probes needed on the array for a range of motif lengths k and array probe lengths b.   

 

Identifying the actual binding sequences given intergenic array spot data is a non-trivial problem, 

which Mukherjee et al. addressed by Gibbs-sampling algorithms[7, 12].  This problem arises 

from a combination of two factors: 1) many intergenic sequences are quite long (mean length 

486 bp for yeast), increasing the probability of finding multiple binding sites; 2) intergenic 

sequences are inherently redundant.  Our combinatorial design addresses both of these issues by 

proposing reasonably short and optimally non-redundant sequence features.   

 

In order to illustrate the advantage of our design in more precisely identifying the exact binding 

sequences, we carried out simulation experiments with yeast Rap1 transcription factor, yeast 

TATA-Box Binding Protein (TBP), as well as 100 random binding sites of length 10.  Since 

some transcription factors are known to tolerate substantial variation of the binding site 

sequence, we generated all possible double mutants for every starting consensus binding site 

sequence and assumed that all those sequences would be recognized on the array.  For our 

designed array, we chose a design from Table 1 with k = 10 and b = 25.  Because a probe of 

length 25 is statistically much less likely to contain multiple binding sites for a given factor than 

a probe of length 486, we also included a combinatorial design with b = 486.  Note that synthesis 

of a dsDNA array with feature length of 486 would be very difficult if not impossible and is only 



used here to illustrate the properties of combinatorial design.  The results of these simulations are 

presented in Figures 2-4.  The simulation data shows that for Rap1 and for random 10-mers, 

about 20-30% of intergenic PBM probes producing signal on the array in fact contain more than 

one binding site.  This figure is greater than 70% for the more degenerate TATA-box sequence.  

In all cases, the designed array, even with average probe length of 486 results in significantly 

fewer multiple site probes, showing that non-redundancy comes from our combinatorial design 

and not just from the reduced probe length.  Furthermore, results for the designed array with 25-

mer probes are good enough that in doing the array analysis, one can assume a single binding 

event per probe.  Rap1 and the averaged data for 100 random sequences show ~ 1-2% multiple 

binding sites per probe.  The TBP simulation results in ~ 6.5% putative multiple binding events.   

 
Signal-to-noise Ratio 

As mentioned above, the problem of finding precise binding sites in long intergenic sequences 

used in CHIP and PBM experiments, is traditionally addressed by Gibbs-sampling and related 

algorithms.  The reasons why Gibbs sampling algorithms do not always perform well 

fundamentally come down the ratio of signal to noise in the dataset in question.  This ratio can be 

estimated as the number of base-pairs involved in binding divided by the total number of base-

pairs in the array probe.  Since the number of binding site bases in the combinatorial design 

remains approximately the same, and the total probe length decreases from a mean of 486 bp to 

25, we can estimate that our design reduces the signal-to-noise ratio by at least an order of 

magnitude.  Indeed, finding a 10-mer binding site in a set of 25-mers is almost a trivial Gibbs 

sampling problem.  In order to test the robustness of our designed array to experimental noise, 

we constructed a 10bp wide PWM (Position Weight Matrix) of the Rap1 transcription factor 

from TRANSFAC[13] data, containing 14 distinct aligned sequences.  Assuming, for testing 

purposes, that these sequences represent the entire set of Rap1 targets, we found all the 

combinatorial array probes and those of one replicate (see Figure 1 and legend) that included 

those sequences.  We then proceeded to remove a fraction of these sequences from the probe set 

and substitute for them random probes, not containing the binding site.  Upon each iteration, we 

used BioProspector[14], a popular implementation of the Gibbs sampling algorithm, to scan the 

sequences 100 times and find an overrepresented motif.  We then used CompareACE[15] to 

calculate the correlation coefficient between the obtained motif and the original PWM that we 

started with.  The results are presented in Figure 5.  The motif extracted with the Gibbs sampler 

remains essentially identical to the original, withstanding up to 50% substituted noise.   

 
Flanking Sequences 

The early versions of PBMs were made double-stranded by enzymatic primer extension,[5, 8] 

which would mean that the combinatorial portion of the probe intended to assay for protein 

binding would be adjacent (either 3’ or 5’) to a constant primer sequence.  Of course, any such 

primer sequence could also contain a portion of a binding site or even an entire binding site, 

making it difficult to analyze the data.  The more recent approach involved only a short 3-base 

flanking sequence on either side of the combinatorial portion of the probe, thus eliminating the 

problem[9].  Nevertheless, the enzymatic primer extension approach remains a valid option and 

has the advantage of higher fidelity, compared with oligo synthesis.  It is therefore important to 

address the potential challenge of analyzing data from an experiment where the flanking 

sequence is bound on some probes and deciphering the true binding site in such an experiment.   

 



We propose that this challenge be addressed by making a replicate array (Figure 1).  The 

simplest approach would be to make a replicate array with different primers/flanking sequences.  

If the number of bound probes differs significantly between the two replicates, it would suggest 

that the flanking sequence is involved in one of them.  Analysis of the array with the smaller 

number of bound probes should reveal the true binding site and help extract additional 

information from the other replicate.   

 

Even with constant flanking sequence, we could solve the problem by making one or more non-

identical array replicates obtained by “shifting” the probe cut sites on the superstring sequence as 

illustrated in Figure 1.  The advantage of such replicate design is that, while the set of k-mers on 

the array remains the same, the position of each k-mer with respect to the chip surface is 

different.  Table 2 contains simulated examples for the case when half of the Rap1 consensus 

binding site (CACCCATACA) is contained in the flanking primer sequence of the probe, thus 

allowing for a large number of possibilities matching in the combinatorial part of the probe.  We 

can filter the matching probes, retaining only those replicate probe pairs that contain at least one 

combinatorial k-mer in common with each other.  If the flanking sequence contained a portion of 

the binding site, the number of probes should decrease substantially after filtering, otherwise 

most of the probes will be retained (Table 2).  For cases when a portion of the flanking sequence 

is involved in binding, the filtering procedure will also retain some randomly paired probes but 

because the signal-to-noise ratio is high, the true binding site can still be easily detected by Gibbs 

sampling.   

 

Discussion 
While the technological aspects of array construction have been the subject of much recent work, 

less attention has been paid to the oligonucleotides on these arrays in terms of experimental 

design.  Here we have laid out an algorithmic solution to the design of a DNA microarray that 

would allow the characterization of binding specificity of any transcription factor independent of 

the species under study.  The solution discussed here focuses on the algorithmic part of the 

problem and does not include some of the concerns involved in the production of such an array.  

However, we believe that given the recent advances in microarray technology, the arrays 

described here are well within the reach of current state of the art.  Custom arrays can be 

obtained from several sources such as Agilent, Nimblegen[16] and several others and new 

technologies for programmable array synthesis are still being developed[17].  Synthesis of the 

complementary strand on the arrays can be achieved enzymatically with a surface-proximal 

primer[5] or with other, more recently developed methods[8, 9].   

 

Analysis of intergenic PBM data has been complicated by the fact that the sequences are long, 

redundant, and often contain multiple binding sites especially for factors that do not bind with 

high specificity.  Our design addresses this problem and in simulations produces data that is 

much easier to analyze due to higher signal-to-noise ratio.  Given our simulation data, it seems 

reasonable to make the assumption of a single binding site per probe and thus make it much 

easier for Gibbs sampling algorithms to converge on the correct solution.   

 

The combinatorial array design that includes all possible k-mers also has the advantage that as 

genome annotation continues to improve, including the validation of intron/exon boundaries and 

discovery of novel genes, the data obtained from such an array remains valid and relevant.  



Despite the probe number savings offered by the design presented here, the exponential growth 

of the number of probes as a function of k will limit the length of combinatorial binding sites.  

However, even with k up to 12, the design can be applied to many important unresolved 

problems.  Applications of ideas presented here extend beyond transcription factor interactions.  

For instance, they may also prove useful to characterize restriction enzyme specificity, DNA 

methylation patterns and in other systematic studies.  The array could be used to study not only 

the binding patterns of natural DNA-binding proteins, but also to analyze mutants and thus help 

us gain a more detailed understanding of the nature of specificity/promiscuity of these 

interactions as well as design new ones.   

 

Conclusions 
In this study, we present the design of a microarray containing all combinations of a DNA motif 

for testing of transcription factor binding and other protein-DNA interaction applications.  The 

advantage of this approach is that it is exhaustive and the same exact design could be used for 

any genome.  Furthermore, uniform probe lengths and optimal non-redundancy allows for a 

more straightforward statistical analysis of the results.  Combined with recent advances in PBM 

technology development,[9] our design will enable more precise identification of true binding 

sites.   

 

Methods 
The problem of constructing a minimum-length string can be represented in graph-theoretical 

formulation.  Imagine a directed graph with nodes represented by all possible k-mers, where the 

edges  

<u,v> exist iff 121 −
= nsssu K  and nn sssv 12 −

= K  

Then, walking the shortest path through this graph results in the construction of the shortest 

cyclical sequence that contains all the subsequences only once.  This turns out to be a well-

known problem in computer science known as the Chinese Postman problem.  The shortest path 

visiting the edges only once is known as the Eulerian cycle.  Moreover, the problem is 

specifically known in terms of constructing the minimal string sequence known as the de Bruijn 

sequence.  The graph consisting of all possible subsequences of a certain length from an alphabet 

of a given size is known as the de Bruijn graph.  A Eulerian path is easily found in linear time 

with Fleury's algorithm[18].   

 

The algorithm has to be modified to take advantage of the fact that for a double-stranded DNA 

probe, every k-mer in the probe will also have a reverse complement and therefore, the reverse 

complement sequence optimally should not be included in the superstring.  Every de Bruijn 

graph therefore contains within it two “reverse complementary” sub-graphs.  There is an 

additional complication arising from the fact that graphs with k = even and k = odd have different 

properties.  Constructing the minimal superstring for odd-k graphs amounts to finding two 

“pseudo-Eulerian” cycles, which are reverse complementary to each other.  This can be achieved 

simultaneously in the context of Fleury’s algorithm.  Even-k graphs are further complicated by 

the fact that some nodes are reverse complements of each other (e.g. ACGT) and are therefore 

shared nodes between the two reverse complementary sub-graphs.  Because of this peculiarity, 

the number of nodes in a “pseudo-Eulerian” cycle containing each k-mer or its reverse 

complement only once is equal to k/2 for odd k graphs and slightly more than k/2 for even k 



graphs.  As shown in Figure 1, this comes from the fact that k-mers that are reverse complements 

of each other have to be counted twice – once for each of the reverse-complementary sub-graphs.  

The figure shows two possible “pseudo-Eulerian” reverse-complementary cycles for k = 2, with 

the four self-complementary nodes highlighted.  .   

 

In simulation to test how robust the array probes are to noise, BioProspector software was run to 

try to find a motif 100 times per run, using the probe sequences from the entire designed array as 

background.   

 

In primer/flanking sequence simulations, we used ACTGACGTACTGGTTT as a control primer 

(not containing a part of Rap1 binding site) and ACTGACGTACTCACCC as the primer 

sequence with the last 5 bases overlapping the Rap1 consensus binding site (CACCCATACA).   
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Figure Legends 
 

 
Figure 1.  Probe design from the shortest path on a graph 

The de Bruijn graph for all possible DNA base doublets and one possible solution for a shortest 

path represented as a pseudo-Eulerian cycle (bold edges).  The reverse complement solution is 

represented by dashed edges in the graph and also the inner cycle sequence.  “Cutting” the 

circular sequence while retaining one overlapping base results in two sequences of total length 

12 (containing all doublets) as compared to the length of all non-overlapping concatenated 

doublets 2*4
2
 = 32.  Cutting the circular sequence at different points allows screening multiple 

replicates and helps identify biases in sequence recognition preferences.  Reverse complement 

strands for the replicates are not shown.   
 
Figure 2.  Distribution of putative PBM probe hits for Rap1 

Frequency of array probe hits distributed by number of potential binding sites per probe.  All 

sequences one or two mutations away from the consensus sequence are assumed to bind.   
 
Figure 3.  Distribution of putative PBM probe hits for TBP 

Frequency of array probe hits distributed by number of potential binding sites per probe.  All 

sequences one or two mutations away from the consensus sequence are assumed to bind.   
 
Figure 4.  Distribution of putative PBM probe hits for 100 random transcription factor 
binding sites of length 10 

Frequency of array probe hits distributed by number of potential binding sites per probe.  The 

data is averaged over 100 random 10-mer binding sites.  For each 10-mer, all sequences one or 

two mutations away from the consensus sequence are assumed to bind.   

 
Figure 5.  Robustness of designed array and Gibbs Sampler to addition of noise.   

Starting with a set of 10-mer Rap1 TRANSFAC binding sites, the effect of added noise is 

measured as correlation of the original PWM with that derived from 100 Gibbs Sampler-runs.  

Each level of noise is represented by the standard box-and-whisker plot.  In the 0-50% noise 

range, the boxes are so small that they are essentially represented by a single line.   



Tables 
 
Table 1.  Sample calculations for the number of probes/array 

         

Motif Length k 
Probe Length b 

5 6 7 8 9 10 11 12 

25 25 108 432 1849 7711 32928 139811 600064 

30 20 86 342 1447 5958 25088 104858 442153 

35 17 72 283 1189 4855 20264 83887 350038 

40 15 62 241 1009 4096 16996 69906 289687 

45 13 54 211 876 3543 14635 59919 247086 

50 12 48 187 774 3121 12850 52429 215408 

55 11 43 168 694 2789 11454 46604 190930 

60 10 39 152 628 2521 10331 41944 171447 

65 9 36 139 574 2300 9408 38131 155573 

70 8 33 128 529 2115 8637 34953 142389 

 

 

 

 

 

 

 
Table 2.  Using array replicates to discover the Rap1 binding site when the flanking 

sequence is involved in binding.   

Flanking/Primer Sequence
a 

 

||xxxxxxxxxxx xxxxxxxxxxxxxxxx 

primer             combinatorial 

 

||xxxxxxCACCC xxxxxxxxxxxxxxxx 

primer             combinatorial 

Total # of Probes Bound 29 744 

Top BioProspector Hits (1
st
 n) CACCCATACA (34) ATTCATGCTC (1) 

# of Replicate Probes Bound 28 59 

Top BioProspector Hits (1
st
 n) CACCCATACA (37) CACCCATACA (25) 

a 
The first array design contains a flanking primer sequence that does not contain any part of the binding site.  In the 

second array design, the last 5 bases of the flanking primer sequence (shown in bold) constitute half of the 

consensus Rap1 binding site.   
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